TorchServe:PyTorch模型部署的首选解决方案

释放双眼,带上耳机,听听看~!
本文章全面介绍了TorchServe作为PyTorch中将模型部署到生产环境的首选解决方案,包括其重要概念Handler、部署步骤以及高级设置等内容。

内容导读

TorchServe 自 2020 年 4 月推出至今,经历了 2 年多的发展,变得愈发成熟和稳定,本文将对 TorchServe 进行全面介绍。

TorchServe 是 PyTorch 中将模型部署到生产环境的首选解决方案。 它是一个性能良好且可扩展的工具,用 HTTP 或 HTTPS API 封装模型。

TorchServe 的前端是用 Java 实现的,可以处理多种任务,包括为部署模型分配 workers、负责客户端和服务器之间通信等。其 Python 后端主要负责处理 inference service。

TorchServe:PyTorch模型部署的首选解决方案

图一:TorchServe performance Tuning 流程总览

此外,它还支持 AB 测试、dynamic batching、logging 和 metrics 的多种 model serving 及 versioning,4 个公开 API 包括:

* Inference API: 监听 8080 端口,默认情况下可通过 localhost 访问,可以在 TorchServe configuration 中进行配置,并支持从模型中获取 predictions。

* Explanation API: 在 hood 下使用 Captum 提供正在部署的模型的说明,并 监听 8080 端口。

* Management API: 允许注册或取消注册并描述模型。它还允许用户增加或减少部署模型的 workers 的数量。

* Metrics API: 在默认情况下监听 8082 端口,使用户可以监测正在部署的模型。

TorchServe 通过支持 batch inference 及部署模型的多个 workers,**** 使得用户得以扩展模型部署并处理峰值流量。这种扩展可通过 Management API 及 configuration file 中的设置来完成。此外,Metrics API 可以通过默认及自定义 metrics 来监测模型部署。

其他高级设置,如接收请求的队列长度、a batch of inputs 的最大等待时长以及其他属性, 都可以通过 config file(启动时可以传递到 TorchServe)进行配置。

用 TorchServe 部署模型的步骤包括:

1、安装 TorchServe、model archiver 及其它依赖

2、选择一个合适的默认 handler(如图像分类等)或创建一个自定义 handler

3、使用 Torcharchive 将 model artifacts 和 handler 打包成一个 .mar 文件,并将其放入 model store

4、开始部署模型

5、运行推理

TorchServe 项目地址:

github.com/pytorch/ser…

TorchServe 重点概念之 Handler

TorchServe 后端使用一个 handler 来加载模型、预处理接收到的数据、运行推理和对 response 进行 post process。TorchServe 中的 handler 是一个 P****ython script, 所有模型初始化、预处理、推理和 post process 逻辑都包含在其中。

TorchServe 还提供了一个开箱即用的 handler,可用于图像分类、分割、目标检测和文本分类等应用程序。此外,它还支持自定义 handler,以防默认 handler 不支持当下的 case。

自定义 handler 提供了很大的灵活性,这可能使 TorchServe 成为一个多框架服务工具。 自定义的 handler 允许以自定义逻辑来初始化一个模型,也能让这个模型从其他框架(如 ONNX)加载模型。

TorchServe 处理程序由四个主要函数组成,functionsinitializeinferencepreprocess, 每个函数返回一个列表。

下面的代码片段是自定义 handler 的示例。自定义 handler 继承了 TorchServe 中的 BaseHandler,可以覆盖任何主函数。 该示例演示了如何用 handler 加载 Detectron2 模型,解决 figure detection 问题。该模型已经被导出至 Torchscript,并使用 mod.half()  运行 FP16 推理。

TorchServe:PyTorch模型部署的首选解决方案

TorchServe 重点概念之 Metrics

将模型部署到生产环境中,需要重点监测其能力表现。TorchServe 定期收集系统级 metrics,并允许添加自定义 metrics。

系统级 metrics 包括 CPU 利用率、主机上可用及已用的磁盘空间和内存,以及不同响应代码的请求数量 (例如 200-300、400-500 和 500 以上)。自定义 metrics 可以添加到 Custom Metrics API。

Custom Metrics API:

github.com/pytorch/ser…

TorchServe 将这两组 metrics 记录到不同的 log file 中。默认情况下,metrics 收集在:

系统 metrics: log _ directory/ts _ metrics. log

自定义 metrics:log directory/model _ metrics. log

TorchServe 的 Metrics API,默认情况下监听端口 8082,并允许用户查询和监控收集到的 metrics。默认的 metrics endpoint 返回 Prometheus formatted metrics。可以用 curl 请求查询 metrics,或者将 Prometheus Server 指向 endpoint,并将 Grafana 用于 Dashboard。

用 curl 请求查询 metrics:

curl http://127.0.0.1:8082/metrics

用 mtail 将 logged metrics导出到 Prometheus 的示例: github.com/google/mtai…

通过在 Bashboard 中跟踪这些 metrics,可以监视在离线 Benchmark 运行期间,偶尔出现或难以发现的 performance regressions。

What’s Next

以上就是关于 TorchServe 的全部介绍。在下一节中,我们将借助一个具体案例,讲解影响部署模型到生产环境中的具体因素,以及如何用 TorchServe 对 Animated Drawings APP 进行调优。

欢迎持续关注 PyTorch 开发者社区, 了解 PyTorch 最新功能及实践教程!

本网站的内容主要来自互联网上的各种资源,仅供参考和信息分享之用,不代表本网站拥有相关版权或知识产权。如您认为内容侵犯您的权益,请联系我们,我们将尽快采取行动,包括删除或更正。
AI教程

ChatGPT使用场景推荐及AI工具优化

2023-12-17 11:53:14

AI教程

Faster Vision Transformer: 为计算机视觉应用的高图像吞吐量而生

2023-12-17 12:05:14

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索